在微积分中,我们经常需要考虑符号对原函数或变换后的函数的影响。在本文中,我们将探讨如何通过符号来确定原函数和变换后的函数所处的象限。
http://easiu.com/common/images/1472867921488421.jpg
首先,让我们回顾一下平面直角坐标系中的象限。第一象限包含所有x和y坐标都为正数的点,第二象限包含所有x坐标为负数,y坐标为正数的点,第三象限包含所有x和y坐标都为负数的点,第四象限包含所有x坐标为正数,y坐标为负数的点。
现在,让我们考虑一些基本的函数形式,如$f(x)$和$f(-x)$。如果我们将这些函数图形绘制在平面直角坐标系中,我们可以看到它们分别位于第一象限和第二象限。这是因为当$x$为正数时,$f(x)$和$f(-x)$的符号相同,因此它们在第一象限中。当$x$为负数时,它们的符号不同,因此它们在第二象限中。
现在,让我们考虑一些更复杂的函数形式,如$f(-x)$和$f(-x^2)$。如果我们将这些函数图形绘制在平面直角坐标系中,我们可以看到它们分别位于第二象限和第三象限。这是因为当$x$为正数时,$-x$和$x^2$的符号相反,因此$f(-x^2)$的符号与$f(x)$的符号相反,这意味着它在第三象限中。当$x$为负数时,$-x$和$x^2$的符号相同,因此$f(-x^2)$的符号与$f(x)$的符号相同,这意味着它在第二象限中。
最后,让我们考虑一些更复杂的函数形式,如$f(-x^3)$和$f(-x^)$。如果我们将这些函数图形绘制在平面直角坐标系中,我们可以看到它们分别位于第三象限和第四象限。这是因为当$x$为正数时,$-x^3$和$x^$的符号相反,因此$f(-x^3)$的符号与$f(x)$的符号相反,这意味着它在第三象限中。当$x$为负数时,$-x^3$和$x^$的符号相同,因此$f(-x^3)$的符号与$f(x)$的符号相同,这意味着它在第四象限中。
通过了解符号对原函数和变换后的函数的影响,我们可以更好地理解函数的性质和行为。这对于解决微积分中的问题非常有用,例如确定函数的最大值和最小值,以及计算定积分。
atx开关电源原理图
美菱洗衣机出厂设置
长虹背光管5f60d击穿
空调制热压缩机发热
mp1482ds各脚电压
自动洗衣机加水一直排
三星保修需要什么
格力空调e5故障
电磁炉不停重启
北京液晶电视维修
电脑开几分钟就死机
创维42e510e上市时间
南宁普田集成灶售后
阿尔斯顿热水器
格力变频空调不制冷只吹风
如何做到家电维修
空调机制冷原理
对管功放原理图
笔记本电源适配器一直闪
aux空调室?确缁?电路图